논문상세
학술지명 지구물리와 물리탐사
제목(원어) 로그 목적함수의 유사 헤시안을 이용한 라플라스 영역 파형 역산과 레벤버그-마쿼트 알고리듬
제목(영어) Laplace-domain Waveform Inversion using the Pseudo-Hessian of the Logarithmic Objective Function and the Levenberg-Marquardt Algorithm
키워드(원어) 라플라스 영역 파형 역산, 로그 목적함수, 유사 헤시안, 레벤버그-마쿼트 방법
키워드(영어) Laplace-domain waveform inversion, logarithmic objective function, pseudo-Hessian, Levenberg-Marquardt metho
저자 하완수 (  , 부경대학교 )
초록(원어)
파형 역산에 사용하는 로그 목적함수는 관측 자료와 모델링 자료의 로그값의 차이를 최소화하는 목적함수이다. 라플라스 영역 파형 역산에서는 주로 로그 목적함수와 유사 헤시안의 대각 성분을 이용하여 최적화를 수행한다. 이 때유사 헤시안의 대각 성분이 0 또는 0에 가까운 값이 되는 것을 막기 위해 레벤버그-마쿼트 알고리듬을 적용한다. 본 연구에서는 로그 목적함수의 유사 헤시안의 대각 성분을 분석하여 음향파 라플라스 영역 파형 역산에서는 유사 헤시안의대각 성분이 0 또는 0에 가까운 값을 가지지 않음을 보였다. 따라서 로그 목적함수의 유사 헤시안을 이용한 경사 방향정규화시 레벤버그-마쿼트 알고리듬을 적용할 필요가 없다. 수치 예제에서 인공합성 자료와 현장 자료를 이용해 레벤버그-마쿼트 기법 없이도... 더보기
초록(영어)
The logarithmic objective function used in waveform inversion minimizes the logarithmic differences between the observed and modeled data. Laplace-domain waveform inversions usually adopt the logarithmic objective function and the diagonal elements of the pseudo-Hessian for optimization. In this case, we apply the Levenberg-Marquardt algorithm to prevent the diagonal elements of the pseudo-Hessian from being zero or near-zero values. In this study, we analyzed the diagonal elements of the pseudo-Hessian of the logarithmic objective function and showed that there is no zero or near-zero value in the diagonal elements of the pseudo-Hessian for acoustic waveform inversion in the Lapla... 더보기
분야
페이지구간 195 ~ 201
논문파일 [03] 195-201 pn19-17.pdf